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J. Phys. A: Math. Gen. 18 (1985) 2975-2993. Printed in Great Britain 

The stochastic quantisation of U(N) and SU(N) lattice gauge 
theory and Langevin equations for the Wilson loops 

G Aldazabal, A Gonzalez-Arroyot and N Parga 
Centro At6mico Bariloche and Instituto Balseiro, Argentina 

Received 30 July 1984 

Abstract. We perform the stochastic quantisation of U ( N )  and S U ( N )  lattice gauge 
theories. For N = 1 and 2 we do this by studying the stochastic motion on the circle and 
the sphere S 3  while the generalisation for any N is achieved by imposing the unitarity 
constraints by means of Lagrange multipliers. We also find the Langevin equations for 
the Wilson loops and show that when averaged over the random forces and the new time 
dimension is taken to infinity they become the Schwinger-Dyson equations of the corre- 
sponding gauge theory. 

1. Introduction 

The stochastic quantisation of quantum field theories (Parisi and  Wu 1981) has 
motivated a great deal of interest not only because it provides us with a novel 
quantisation procedure by also because of its applications in the numerical simulation 
of lattice gauge theories (Hamber and Parisi 1983) (LGT). 

An extra time dimension is added to the quantum field theory (in Euclidean metric) 
and  it is treated as a non-equilibrium statistical mechanical problem. In a way this is 
similar to what occurs in the usual Monte Carlo simulation of a lattice system where 
the new dimension is represented by the time it takes to reach the equilibrium 
distribution. The dependence of the fields on this fifth coordinate is determined by 
Langevin equations with stochastic forces following Gaussian distributions ; the quan- 
tum field theory results are obtained only when the system reaches its equilibrium 
distribution as t + a. Alternatively Fokker-Planck equations forthe probability distribu- 
tion could be written down directly (Parisi and Wu 1981, Floratos and Iliopoulos 1982). 

Standard partition function results are sometimes easier to obtain in this new 
formalism: an interesting example was given by Alfaro and  Sakita (1983) and Aldazabal 
et a1 (1983b) in the derivation of reduced models. 

Parisi and  Wu applied this quantisation procedure to gauge theories by proposing 
Langevin equations for the potential. However an interesting alternative is to consider 
the stochastic equations satisfied by the gauge invariant quantities of the theory. This 
was done in a previous paper (Aldazabal et a1 1983a) for the Abelian compact LGT. 
An advantage of this idea is that the equivalence with the standard partition function 
approach can be easily established at all orders in the strong coupling expansion by 
showing that the Langevin equations for the Wilson loops become the Schwinger-Dyson 
equations of the corresponding LGT as t -+ E. 
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In this paper we report about the generalisation of these results to the non-Abelian 
unitary groups U ( N )  and S U ( N ) .  Langevin equations can be easily given when all 
the fields are independent variables; this is not the case however for the groups under 
consideration because they have to satisfy the unitarity constraints. An immediate 
solution to this problem might be to introduce a parametrisation for the group and 
after that to write Langevin equations for the independent fields only. This approach 
works out well for the Abelian case and for N = 2 but it is rather difficult to extend it 
to larger groups. 

A way out of this problem is to consider the elements of the unitary matrix as 
independent variables and to take care of the constraints by means of Lagrange 
multipliers. As we shall see later on, this turns out to be a convenient tool for the 
stochastic quantisation of LGT. 

This paper is organised as follows. In § 2 we present our stochastic quantisation 
of Abelian LGT in D dimensions. A Langevin equation is written down for the angle 
which parametrises the circle S' and from it we obtain the corresponding equations 
for the link variables and the Wilson loops. We also show how to do strong coupling 
expansions with this formalism. Finally the equivalence between the Langevin 
equations for the loops (once they are averaged over the random forces and the extra 
time is sent to infinity) and the Schwinger-Dyson equations are established. 

In the next section we study the non-Abelian U(2) and SU(2)  LGT by parametrising 
the corresponding group manifolds S' x S 3  and S3 respectively. We also show that for 
the one-plaquette problem the eigenvalues of the U(2)  matrix behave as a time 
dependent Coulomb gas on a circle in the presence of an external field. 

In § 3 we perform the quantisation of U ( N )  LGT for any N and in D dimensions 
by using Lagrange multipliers. As in § 2 we give a simple example of strong coupling 
perturbation theory and establish the connection with the Schwinger-Dyson equations. 
We generalise these results to S U ( N )  in the last section. Some technical aspects are 
discussed in three appendices. 

When this work was under completion we received two preprints (Alfara and Sakita 
1982, Guha and Lee 1982) which also deal with the stochastic quantisation of U(  N)  
LGT. Although part of the results coincide, our approach is completely different from 
theirs. 

2. Stochastic quantisation of U(l) LGT 

We begin by treating the simplest case, U(1) compact QED (Floratos and Iliopoulos 
1982, Zwanziger 1981). In the usual functional approach (Wilson 1974) one works 
with the partition function 

Z =  I'I,de,e-s i 
with 

s = - p  C COS ep  
P 

where 1 denotes the links and P the plaquettes. Operator vacuum expectation values 



Stochastic quantisation of lattice gauge theory 2977 

are obtained from 

(0)s = 5 n, d8,O e-S. (2.3) 

In the stochastic quantisation the independent angles 8, acquire their dependence 
in the new time dimension t by means of a Langevin equation. We propose 

(2.4) 

where {P,} is the set of all the plaquettes attached to the link 1 and q ( f )  is a Gaussian 
stochastic force defined at that link?. 

In this new formalism mean values are calculated by averaging over the Gaussian 
random force. An operator 0 now gets its dependence on t through the & ( t )  and 

where 

The quantum mechanical results are supposedly obtained by taking the limit t + a, 
namely 

lim (0( t ) ) ,  = (0)p (2.8) 
1-Cc 

What we shall do here is to show that this is true for the Langevin equation (2.4). 
The basic idea is to derive stochastic equations for gauge invariant quantities (the 
Wilson loops) and to show that when the large time limit is taken they become the 
Schwinger-Dyson equations of lattice QED (Foerster 1979, Eguchi 1979, Weingarten 
1979). 

From (2.4) we see that the link variables 

U(/, t )  = exp(.iO1(t)) (2.9) 

satisfy 

(2.10) 

Here U p  is the product of the Ul's around the plaquette P. For the Wilson loop 
W,( t )  = n i ~ c  Ul( t ) ,  using (2.10) we have 

+ As is well known this expression is only a pre-equation. To be turned into an  actual equation i t  must 
be supplemented with an  additional interpretation rule. Calculations that  follow are  consistent with the 
Stratonovich prescription (van Kampen 1980). 
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where 

(2.12) 

In order to obtain the solutions of these equations in the form of a strong coupling 
expansion we first propose 

the first factor is the solution of (2.11) for P = O  and the expansion for V c ( t )  is 
oc 

VC(t) = c (P/2)”v‘,“’(t) 
n = O  

with 

(2.13) 

(2.14) 

v‘p)( t )  = 1 .  (2.15) 

From (2.11)-(2,15) we have the nth order of the Wilson loop 
, I - 1  1 

k = O  0 It c 
(PI) 

w‘,“’( t )  = - w‘p)( t )  dt’ U‘,“)( t ’ )  1 [ U(p:-’-k)( t )  - U(p:-l-k)( r)]. (2.16) 

As a trivial example we show how to evaluate the first two orders of U p ( ? ) .  The 
first one is 

(2.17) 

Here we observe that times in the interval [ t ,  001 contribute with a factor one while 
times in [0, t ]  give an exp(-t) for each of the links around the plaquette P, then 

(UP’ (  t’)) ,  = e-4r + o as t+co.  (2.18) 

Using (2.16) the next order is 

~ / ~ ~ d t ’ Z ~ [ e x p ( i  1; npl(t”)dt”) -exp(-i l o r ’ ~ p , ( t ” )  dt”)]. (2.19) 
(9) 

The reason why (2.18) is zero as t + CO is that in (2.17) there is a phase contributing 
at all times from 0 to t. In (2.19), however, it is possible to obtain a non-zero result 
by cancelling the first phase by those inside the sum over plaquettes. This corresponds 
to choosing only the plaquette P in the set { P I }  and the last term of that sum. Since 
P appears four times we have 

( U‘,“( t ) ) ,  =$I lor dt’ exp[ -4( t - t ’ ) ]  

= PI2  as t+m. 

A similar reasoning allows to evaluate higher orders in the limit of large t. 

(2.20) 
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In order to relate the Langevin equation (2.1 1) with the Schwinger-Dyson equations 
we first prove that at all orders in perturbation theory 

(Wc(t)771(t))rl = i(WC(t))rl (2.21) 

where 1 belongs to C. This is true because at a given order 7 a typical term on the 
left-hand side is of the form 

r m  \ - 1  

(2.22) 

(2.23) 

and the relation (2.21) is verified?. 
Averaging over r)( t )  in (2.11) and using (2.21) we obtain ( L  is the perimeter of the 

loop C )  

(2.24) 

(Pi) 

and since as t +. M the left-hand side averages to zero 

{PI) 

The first (second) term in the sum corresponds to a loop obtained from C by adding 
on the link 1 a new plaquette with an opposite (the same) orientation to that of C. 

We recognise in (2.25) the Schwinger-Dyson equation of QED on a lattice (Foerster 
1979, Eguchi 1979, Weingarten 1979). 

If  the loop C is such that a given link I is traversed twice we have to modify (2.21). 
In this case we have 

( WC ( t ) 71 ( t )> I) 

= 2i( WC(f)), 

= O  

if the link is traversed in the same direction 

if it is traversed in the opposite direction. 

But this is also in agreement with the Schwinger-Dyson equations for this kind of loop. 
This completes our proof that the Langevin equation for the Wilson loops, (2.11), 

reduces to the Schwinger-Dyson equations giving a correct stochastic quantisation of 
lattice QED. 

t From here we see that (2.21) is not well defined since the limits from above and below are different. 
However this is a particular case of the well known result ( o ( f ) g ( x ) ) ,  = ( g ( x )  dg(xj /dx) ,  where x satisfies 
the stochastic equation x = f ( x )  + g ( x ) o ( t )  in the sense of Stratonovich. We gratefully acknowledge G Parisi 
for a comment on this point. 
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3. Stochastic motion on S’ X S3 and S3 

The generalisation of the results of the previous section to the groups U(2) and SU(2) 
is straightforward. To avoid unnecessary complications we shall deal only with the 
one-plaquette gauge theory postponing the generalisation to any number of dimensions 
(and arbitrary N )  to the last two sections. Then the action is 

S = -fP(Tr U +Tr U’) ( 3 . 1 )  

where U belongs to U(2) or SU(2). We start by writing down the general form of an 
element of U(2)t  

.,Y(_“, :*) ( 3 . 2 ~ )  

= y * u  (3 .2b)  

where 

IyI2= 1 la12+IP12=l (3.3a, b )  

then y belongs to U(1) and U to SU(2). 

x”,. = 1, .  . . , 6  such that 
We can think of the group manifold embedded in R6 with Cartesian coordinates 

y = x6+ixs a = x 4 + i x 3  p = x 2 + i x 1 .  (3 .4)  
A parametrisation satisfying (3 .4)  is 

x1 =sin e2 sin el cos IC, x2 = sin e2 sin el sin + 
x3 =sin e2 cos el 

xs =sin e 

x4 = COS e2 
for the subgroup SU(2) and 

x6 = COS e 
for the U(1). 

With this parametrisation the action ( 3 . 1 )  reads 

( 3 . 5 ~ )  

(3 .56)  

s = -2p COS e COS e2. (3 .6)  

f ”=  -SS/Sx,+[”(t) (3.7) 

The simplest Langevin equations we can write for the x ” ( t )  are 

where the [ ” ( t )  are a set of six stochastic forces following a Gaussian distribution. 
The mean value of a stochastic variable A ( [ ” )  is given by 

D[”( t )  = n d[”( t )  exp(-$ J tU2( t ’ )  dt’) 
f 0 

(3.8) 

(3 .9)  

Strictly speaking U(2) = SU(2) X U ( l ) / Z 2 ,  however since we are studying diffusion on the group manifold, 
which is a local process, we can take U(2) = SU(2)  x U(1). 
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and 

(3.10) 

Equations (3.7) do not take into account the constraints (3.3~2, 6). In order to 
implement them it is convenient to change to polar coordinates (a ,  0 )  in the plane 
(x5, x6) and to spherical ones ( r ,  $J, e l ,  e,) in the extra R4. To do  this we follow Graham 
(1977) (see also appendix 1) obtaining (the 7’s are also Gaussian stochastic forces 
with the same variance as the €”) 

ci=(a/aa)(-S+ln a ) + v a  

for R2 and 

I: = (a /a r ) (  - S  + 3 In r )  + 7, 

* = r sin e, sin el-G+ 7’) 
1 as 

e,=-[”(-s+-)+.‘] 1 In sin 
r sin e2 ae,  r sin 0, 

In sin’ e2 
r 

(3.11) 

(3.12) 

for R4. Notice that the factors in front of the brackets are the corresponding arc 
elements in curvilinear coordinates. 

Since we are interested in the stochastic motion on the manifold SI x S3 we have 
to enforce 

a ( t ) = r ( t ) = l .  (3.13) 

This can be easily achieved by using Lagrange multipliers which transform the stochastic 
equations for r and ci into deterministic ones with the time independent solutions 
(3.13). Once this is done our set of stochastic equations become 

(3.14) e = - 2 p  sin e cos e,+ ve 
and 

4 = v,/(sin el sin e,) 
el = cot el/(sin2 e,) + T1/sin e, 
e ,  = - 2 p  COS e sin e2 + 2 cot e2 + 77,. 

( 3 . 1 5 ~ )  

(3.156) 

(3.1 5 c )  

To obtain the Langevin equation for the plaquette variable U we have to go back 
to (3.26) and the parametrisation (3.5) from where 

a COS @,/at = Re U , ,  

a sin 13, COS O1/a t  = Im t i , ,  

a sin O2 sin e l  sin $ / a t  = Re ti,, 

a sin 0, sin el cos + / a t  = Im U l 2  (3.16) 
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and 

Oij = (a/at)(eieuij). (3.17) 

Using here the equations for 8, 4, 4, and 8, we have the matrix equation 

a U ( t ) / a t  = - p (  U,- I) +iH(t) U (  t )  (3.18) 

where H is a Hermitian stochastic matrix. To the interested reader in following the 
(not completely trivial) steps from (3.14) and (3.15) to (3.18) we refer to appendix 1 
where we also describe the relation between the 7's and the matrix H. In particular 
we show that 

To=;TrH (3.19) 

and that the mean values have to be taken with the measure 

DH(  t )  = n n dHii(  t )  dH,2 dHTz exp( -4 Iom Tr H 2 ( t ' )  dt'). 
r i=1 ,2  

(3.20) 

To obtain the Langevin equations for the group SU(2) it is sufficient to realise that 
the condition det U ( t )  = 1 implies 0 = 0 at all times, then from (3.14) and (3.19) we 
see that the averaging has to be done with Hermitian matrices of zero trace. However 
U still satisfies (3.18). 

Let us remark that the measure (3.20) is invariant under transformations of the form 

H ( t )  +. W t ) 7 ( f ) f i Z + ( t )  (3.21) 

with fl an element of U ( N ) .  Since the integral over fl is trivial (see for instance 
appendix 2) the only relevant variables are the eigenvalues of H (  t ) .  Then we are led 
to consider the stochastic equations for the eigenvalues A, =ela! and h2=ela2 of the 
unitary matrix. In order to obtain them we first realise that from (3.2)-(3.5) 

det U (  t )  = eZio 

= exp[i(a, + a,)] 

then 

6 = ; ( a , + a 2 ) .  

Besides 

Tr U (  t )  = 2 cos 62 eie 
- - + eia2 

which yields 

6 2 = 5 ( ~ 1 1 + ~ ~ 2 ) .  

Using (3.14) and ( 3 . 1 5 ~ )  we have 

ci, = 8 +  8,= - p  sin a 1 + 2  cot ; (a , -a , )+6,  

ci, = 8 - i2= - p  sin a , - 2  cot ; (a l  - a,)+ a2 

(3.23) 

(3.24) 

(3.25) 

with 6, two Gaussian stochastic forces. 
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It is worthwhile writing this in a slightly different way by noticing that the action 
can be expressed as 

s = - P ( C O S  CY1 + cos a2) (3.26) 

(3.27) 

(3.28) 

These two equations describe the stochastic motion of two charges moving on a circle 
interacting by means of a Coulomb potential in the presence of an external field. This 
is in agreement with the well known result in the partition function approach that for 
the U( N )  one-plaquette LGT the eigenvalues of the unitary matrix behave as a Coulomb 
gas on a circle (Gross and Witten 1980). 

4. U(N) lattice gauge theory 

4.1. Solution of the unitarity constraints 

In 9 9  2 and 3 we have seen how to write the Langevin equation for the unitary matrices 
U(t)  starting directly from the group manifolds for U(1), U(2)  and SU(2). Here we 
show that the stochastic quantisation can be easily done for any N by imposing the 
unitarity constraint by means of Lagrange multipliers. We consider the system in any 
number of dimensions, in this case the Wilson action is 

(4.1) 
P 
2 P  

S = - - z ( T r  U,+Tr U:) 

and the equation for the evolution of the element U,( 1, t )  of the matrix U (  1, t )  attached 
to the link 1 is 

Here we considered the U,(/ ,  t )  as independent variables but we introduced N 2  
Lagrange multipliers which guarantee the constraints 

(4.3) 

(We dropped the link index 1 and the time dependence; we shall put them back when 
necessary.) 

At this point the stochastic force q is an arbitrary matrix and the integration measure 
is given by 

(4.4) 
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To determine the A,k’s we use the condition 

which together with equation (4.2) yields 

Replacing in (4.2) we obtain a matrix equation for the stochastic quantisation of the 
U( N )  lattice gauge theory 

t ) - ’  c U ( / ,  t)[U+p,(r)- ~ ~ ~ ( c ) ] + i ~ ( l ,  t )U(I ,  t )  (4.7) 
at 4 {PI )  

where H(1,  t )  happens to be a Hermitian matrix defined by 

i H (  1, t )  = $( 77 - v+). (4.8a) 

Notice that H(1,  t )  follows a Gaussian distribution with the same variance as ~ ( 1 ,  t ) .  
In particular 

( H i k ( f l ) H / n ( t Z ) ) H  = 6 i n 6 d ( f l -  t z ) .  (4.8b) 

Let us emphasise that since U satisfies (4.5) it will be a unitary matrix at any time 
if it is at t = 0. 

Comparing (4.7) for N = 1 with (2.10) we see that they differ in a factor $ in the 
term proportional to p. However also the variances of the Gaussian distributions (2.6) 
and (4.4) are different. It is immediate to check that if we rescale simultaneously the 
stochastic force and the time by factors $ and 2 respectively then both equations become 
equal, and the same happens for the variances. Since we are interested in the limit 
t + 00 the rescaling in t does not have any consequence. Similar considerations should 
be made to compare with the results of 9 3. 

4.2. Langevin equations for the Wilson loops and strong coupling expansions 

As we did for the U(1) case we can obtain a Langevin equation for the Wilson loops. 
However now we have to be careful because the loop contains a path ordering 

Wc( t )  = Tr[ U (  I , ,  t )  . . . U (  I,,, t )  U (  I,,+,, t )  . . . U(ZL, t ) ] .  

Its Langevin equation is easily seen to be 

where 

(4.9) 

(4.10) 

(4.11) 

(4.12) 
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Because of the non-commutativity of the stochastic forces at different links and 
times the perturbative solution of (4.10) is a little more involved than in the Abelian 
case. The first order is 

WP'( t )  = Tr n U'''( I ,  1 ) )  LEC 
where 

U'''(!, t )  = T exp i H ( I ,  t ' )  dt '  [ ( id )I 
(4.13) 

(4.14) 

with T a time ordering operator. To evaluate the next orders it is not convenient to 
factor out a function V , ( t )  as we did in (2.13). Instead it is better to construct a 
perturbation series for each link. Then we propose 

r 1 

1 
where 

oc 

V(I, t )  = c (p/4)"u'"'(I, t )  
n=o 

(4.15) 

(4.16) 

and do)( I ,  t )  = 1 .  

for each order we have 
To evaluate the U("'(/, t )  we replace U(l ,  t )  = U(O)(I, t )V(I ,  t )  in (4.7) and solving 

vi")( I, t )  = dt '  u l k ) (  I ,  t ' )  [ U(p:-l-k'+ - U(p:-l-k)( t')]. (4.17) 

As an example of the strong coupling expansion of a Wilson loop we calculate the 

From (4.15) 

k = O  " - I  5' o {PI) 

mean value of a plaquette up to order p in the limit t+m.  

Tr Up(t)=Tr n U'((, t ) [ l+(~ /4)u"' (I ,  t ) ]  
la P 

=Tr( U',O'(t))+(P/4) Tr[ U ' , O ' U ' , " U ~ ~ ' U ~ ' U ~ ~ '  

(4.18) + U'O' Uy'v:" U(0) + U i O )  U(0' U$o'uy' U p +  ~ p U 1 " ] (  t )  1 2  

where 1, 2, 3, 4 stand for the links of the plaquette l? 

rr 
The oj'' are given by (4.17) 

uj"(t) = J [ U$'+( t') - U$)(  t')] dt'. 
{PI} 0 

(4.19) 

To calculate Tr UP(t)H we have to average each order in P over all Hermitian 
matrices. In appendix 2 we show a possible way to do it; in the first order we have 
(see (A2.17)) 

(Tr( U$"( t ) ) ) H  = N e-'" 

+ o  as t + m .  (4.20) 

As in the U(1) case it is possible to obtain a non-vanishing contribution in ctrder 
p by picking up the plaquette P from the set { P I }  for each u$"(f) .  Noticing that 
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U"'( 1, t )  U"'+( f, t ' )  = U"'( 1, t - t ' )  we finally have 

(Tr U$'(  t ) ) H  = Np exp[-2N( t - t ' ) ]  d t '  

as t + m  (4.21) 

and we see that in the large time limit it coincides with the well known result from 
the standard functional integral quantisation (Wilson 1974). 

5: 
+ P I 2  

4.3. Connection with the Schwinger- Dyson equation 

Similar to what we did in § 2 for the Abelian system this connection is established 
by showing that 

( P ( l ,  t ) ) H  =f iN(  W c ( f ) ) H  (4.22) 

holds at  all orders in the strong coupling expansion. 
First let us remark that because of the properties of this expansion that we have 

already found in (4.2), the general form of a typical term is still given by an expression 
like (2.22). Of course because of the non-Abelian character of the group there 
will be slight differences but they are not relevant for our  arguments. 

As a consequence we see that by comparing (4.9) and (4.12) the two averages in 
(4.22) differ only in the integral over the matrix H(1,  t ) .  More explicitly we only have 
to prove that I DH(/, t ) ( H ( f ,  t )  u(o)(1, t ) l i j  = t i N  DH(/, t ) (  u(o)(/, t ) ) *  (4.23) I 
This can be done by using 

(U"'(1, t ) ) i j  = T exp i H(1, t ' )  d t '  { [ ( I" HIij  
(4.24) 

and the Wick's theorem for the Gaussian expectation values. 
Finally replacing (4.22) in (4.10) and taking the limit t + CO we have 

P 
2 r - m  I C C  

(4.25) LN lim ( W c ( f ) ) H  =- lim [( wc,(l, f ) ) H  - (  wcz(l, t ) ) H 1  
1" 

{ P I }  

and we notice that this coincides with the Schwinger-Dyson equations for U( N )  LGT 

(Foerster 1979, Eguchi 1979, Weingarten 1979). This allows us to identify 

= lim ( W c ( t ) ) H .  
t -oC 

(4.26) 

If the loop C is such that a given link 1 is traversed more than once this equation 
has to be modified (Foerster 1979, Eguchi 1979, Weingarten 1979). Although the 
algebra is rather lengthy it is possible to show that the Langevin equation we gave 
before is also in agreement with the Schwinger-Dyson equation for this kind of loop. 
As an example we consider the case where the link I ,  is traversed twice in the same 
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direction. Shortening the notation in an obvious way 

W, ( t )=Tr [Ul . .  . Un-,U,,U,,+l.. . Ul-lU,,U,+l. .  . U d f )  (4.27) 

and after straightforward calculations similar to those we did for the simpler loops 
one sees that (4.22) is now replaced by 

(p(ln3 f ) ) H  = $ [ N W c ( t ) H +  wci(ln9 f)Wc;(lm t ) H 1  (4.28) 

with 

Wci(l,,, t )=Tr [U, .  . . U,-,U,U,,, . .  . U,](t) 

Wci(L, t)=Tr[U,,+,  . . . U,-lU,,l(t). (4.29) 

As before to prove this equality requires the evaluation of integrals only over 
H( 1,, t ) .  In particular integrals like 

(4.30) 

and 

1 DH(1, t ) (  U‘O’(4 t ) ) , k (  U‘O’(1, t ) I s r  

have to be calculated. 

for this loop (Foerster 1979, Eguchi 1979, Weingarten 1979) 
From (4.27) and (4.10) in the limit t + 03 we regain the Schwinger-Dyson equation 

LN lim( W c ( t ) ) H  = -1im ( Wci(l, t )  Wci(l, f))H 
r - =  l € C  t - 0 2  

(4.31) 

5. SU(N) lattice gauge theory 

The Langevin equations for SU( N )  lattice gauge theory can be derived from the results 
of 0 4. 

As we saw in § 3 the only difference between the stochastic quantisation of U(2) 
and SU(2) is that in the last case we have to average only over Hermitian matrices of 
zero trace. However this is not enough for any N. To see this let us first notice that 
we want the condition 

(5.1) d det U (  1, t ) / a t  = 0 

to hold at any time. If we now write 

U ( l ,  t)=exp(iK(l,  t ) )  (5.2) 
then 

det U (  I ,  t )  = exp(i Tr K (1, t ) )  (5.3) 
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and if (4.7) were valid for any SU( N) with the only restriction Tr H = 0 we would have 

a det U (  I ,  t ) / a t  = i det U Tr k(  I ,  t )  

=det  U ( / ,  t){iTr H ( I ,  t)+(P/4)[Tr U+( / ,  t ) -Tr  U ( / ,  t ) ] }  (5.4) 

from where we see that condition (5.1) is not fulfilled. In order to get rid of the last 
term on the right-hand side we have to modify (4.7) for the link variable. The correct 
one for S U ( N )  lattice gauge theory is obtained by adding to it the term 

Then the Langevin equation for the Wilson loop is 

-=- a wc(t)  E WC,( / ,  t )  - W C , ( / ,  t ) ]  
a t  4rec 

(5.6) 
{PI) 

Let us emphasise that this term does not appear for SU(2); the trace of a matrix 
belonging to this group is real and the term vanishes. 

The proof that when averaged over the random forces (5.6) yields in the limit t + 00 

the correct Schwinger-Dyson equation can be done along the same lines for the group 

For the sake of completeness we give in appendix 3 the Schwinger-Dyson equations 

As we already said the average has to be taken only over Hermitian matrices of 

U ( N ) .  

for SU( N) lattice gauge theory. 

zero trace. As a consequence (4.8b) has to be changed for 

From this and the Wick decomposition we have 

which agrees with (A3.3). 
Equation (5.9) is not the right one when one link of the loop is traversed more 

than once. We have again checked the case where the link I ,  is traversed twice in the 
same direction. Now equation (5.6) does not hold and has to be replaced by 

( p ( / n ,  f ) ) H  =4i{[(NZ-2)/N1( W c ( t ) ) H  +( wc;( /n* t ,  w c i ( l n ,  f ) ) H }  (5.10) 
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and the corresponding Langevin equation becomes in the limit t + cc 

which is the Schwinger-Dyson equation for this case (see appendix 3) .  
The proof we have developed for the stochastic quantisation of Abelian and 

non-Abelian LGT can in principle be also applied to continuum quantum field theories. 
In the case of a scalar field this would be a much simpler proof than the usual 
diagrammatic one (Parisi and Wu 1981, Grimus and Huffel 1982). 
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Appendix 1. Change of variables for the Langevin equation 

For completeness we present here the transformation properties of a coupled set of 
Langevin equations under a general change of variables (Graham 1977). 

This set of equations is of the form 

4 ”  = f Y ( q ) + g : ( q ) 5 ’ ( t )  (Al . l )  

where Y = 1, . . . , n numbers the macroscopic stochastic variables q” and i = 1 , .  . . , m the 
stochastic (Gaussian) forces 5‘. f ” ( q )  and g ” ( q )  are functions of the coordinates q’. 

Under a general change of variables 

dq’” = A ” ,  dq” (A1.2) 

where 

A”, = a q ” / a q P  (A1.3) 

the quantities q”, f” and g ;  have contravariant vector transformation properties. The 
Langevin equation given in (Al . l )  is already written in a covariaflt form. To raise and 
lower indices it is possible to define a metric tensor (Graham 1977) 
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For instance the metric tensor obtained after the change of variables (3.4a)-(3.4b) 
is 

0 

i Q” = 
I / (  r sin el sin 

1 

\ 0 1/ Y 2  

(A1.5) 

(rows and columns are ordered in the sequence a, 8, r, $, e,, 02). 
In general it is possible to use a different set of stochastic forces in the Langevin 

equations without changing the mean values of the macroscopic variables. Of course 
this transformation should leave the Fokker-Planck equations unchanged. This 
equation can be written (Graham 1977) 

-=( --K”(q)+-;-;QYY)P(q, a a2 t )  

a t  as” as as 
(A1.6) 

(A1.7) 

From here and (A1.4) we see that for this purpose it is enough to choose the new 
set of g,u’s (the coefficients of the stochastic forces) such that the metric tensor is kept 
unaltered and after that to observe in the forcesf”(q) the variation in the K ” ( q )  due 
to the new g;. 

In order to prove the equivalence between the equations (3.14) and (3 .15)  and 
(3.18) for the unitary matrix we should notice that the first give the same Fokker- 
Planck equation as the set 

e = -2p COS e2 sin e + h+( t )  

cos CC, cos 8, -sin $ cot O2 
sin 8 ,  

ij = - h - (  t )  + h3( t )  

-sin CC, cos 8, -cos CC, cot O2 
sin ill 

(A1.8) 

6, = -h- (  t )  sin el cot e, + h,( ?)(sin CF, + cos CC, cos el cot e,) 
+ h4( t)(  COS $ -sin CC, cos el cot e,) 

e ,  = -2p cos e sin e2+  h - ( t )  cos el + h , ( t )  cos CC, sin e, - h4(t)  sin CC, sin e, 
where h+,  h - ,  h ,  and h,  have the same variance as T ~ ,  T ~ ,  vo, and voz. Actually by 
comparing the equations for 8 we see that h, coincides with T ~ .  It is a trivial exercise 
to check that the metric tensor associated with thee: equations is equal to the one 
given in (A1.5) once we impose the constraint a ( t )  = r ( t )  = 1 .  The four stochastic 
forces in (Al .8)  can be taken to define a 2 x 2  Hermitian matrix. We first write 

770“ h + = ( h , + h 2 ) / 2  

h- = ( h ,  - h , ) / 2  
(A1.9) 
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and the Hermitian matrix is 

h3-ih4 h2 

From here we see that 

T~ = Tr H/2 .  

Since 

Tr H 2 =  h:+h:+2(h:+hi) 

=2(h:+ h?.+h:+ h:) 

the measure we have to use to average over Hermitian matrices is 

DH(i)=~dhl(r)dh2(r)dh,(i)dh4(t)exp(-~~o~Tr I H 2 ( t ' ) d t ) ,  

Appendix 2. Evaluation of an integral 

We show here how to evaluate integrals of the form 

299 1 

(Al .  10) 

( A l . l l )  

(Al .  12) 

(A1.13) 

(A2.1) 

which appear in the strong coupling expansion of the Langevin equations (4.7) and 
(4.10). An alternative procedure will be used in the last part of § 4 and in § 5 ;  the 
advantage of the present calculation is that it does not require an expansion in powers 
of r. 

We begin by noticing that if the interval [0, t ]  is divided in N parts of size E + 0 
such that t = Ne is kept fixed then (A2.1) becomes 

I , k ( t )  =lim((exp[iH(t)e] F - 0  exp[ iH( t - e )&.  , . i H ( ~ ) e ] ) , ~ ) ~ .  (A2.2) 

So we only need to evaluate 

I,,,,(&)=- d N 2 H  exp(-&/a Tr H2)(eiPH),,,, z ' I  
H is an N x N Hermitian matrix and the measure is given by 

(A2.3) 

N 

d N 2 H  = n dH,, n d(Re H,,) d(Im H,,) (A2.4) 
, = I  ,, 

and 

z = d N 2 H  exp[-(&/a) Tr H 2 ] .  ( ' 4 2 . 5 )  

Following Gross and Witten (1980) we diagonalise H by means of a unitary matrix V 

H D =  VHV-' (A2.6) 
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and change variables to the N eigenvalues A, and N2- N parameters of the matrix 
V. The measure now reads 

d N 2 H = d V d A  l . . . d A N  fl n (Ap-A, ) '  
I s p  n s N  

where d V  is the invariant measure in U ( N ) .  
Since in terms of the new variables 

N 
(e ieHlfm = 1 v f  v,, eiAs 

, = I  

(A2.7) 

(A2.8) 

the integration over V can be done by using the orthogonality relations for the group 
U ( N )  and we obtain 

(A2.9) 

The result of integrating over all the eigenvalues A, except j = s is (Mehta 1967) 

(A2.10) 

(A2.11) 

are the harmonic oscillator wavefunctions (H, (x) are the Hermite polynomials). 
Doing similar manipulations with z we have 

z = y1 dAs $ f ( J ~ / a A s )  
1=0 --5 

and, after integrating over A, in (A2.10) and (A2.12) 

(A2.12) 

(A2.13) 

where the L(&'(x) are the Laguerre polynomials (Gradshteyn and Ryzhik 1965). Finally 
up to order E, If,(&) can be written as 

I/,(&) = &, e x p ( - N a ~ / 4 )  (A2.14) 

and combining this result with (A2.2) 

J k ( f )  = a,, exp(-Na/4t). (A2.15) 

The integral (A2.1) is first order in the strong coupling expansion of the average 
of the link variable, i.e. 

'Jk ( ') = ( ')kO)( ))ff ( A2.16) 

and as t + o O  it vanishes. Combining (A2.15) for all the links of a loop W , ( f )  the 
first-order contribution is 

( % ( t ) ) H  = N exp(-LNa/4t) ( A2.17) 

(we took a loop C such that any link is traversed only once). 
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Appendix 3. Schwinger-Dyson equation for SU(N) lattice gauge theory 

Following Foerster (1979), Eguchi (1979) and Weingarten (1979) we start with the 
expression (TI is a generator of the group) 

(A3.1) 

change the variable U,, to (1 + iET’) U,” and collecting terms proportional to E and using 

(Tr( U1 U, . . . T’U],,, . . . 

s o b s c d  
N2-1 

s s -- 
N ( T J ) a b ( T J ) c d =  ad be 

j =  1 

we obtain 

where 
I ! 

W, = Tr n U, 
I t C  >, 

(A3.2) 

(A3.3) 

(A3.4) 

and similarly for W,, and Wc2. 

In particular if it appears twice in the same direction we have 
If a given link appears more than once in the loop C (A3.3) does not hold anymore. 

wc = (P/2)( wc, - WCJ - ( P / 2 N )  
( N 2 - 2 )  

N 

(A3.5) 

with C{ and Cs defined in (4.29). 
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